AP CALCULUS AB	Homework 4.5	Name:
Dr. Paul L. Bailey	Thursday, January 16, 2020	

Write your homework *neatly*, in pencil, on blank white $8\frac{1}{2} \times 11$ printer paper. Always write the problem, or at least enough of it so that your work is readable. If the problem involves a function, write the function. If the problem involves an equation, write the equation. Use words, and when appropriate, write in sentences.

An interval is *maximal* with respect to a condition if it is not a proper subset of another interval which satisfies the condition. That is, if it is not contained in a bigger interval which also satisfies the condition.

An *interior point* of an interval is a point in the interval which is not an endpoint.

The phrase "find and classify the critical points of a function f" means:

- Find all interior points x in the domain of f such that f'(x) = 0 or f'(x) does not exist.
- Determine whether each critical point gives a local maximum, a local minimum, or neither.

Problem 1. Let

$$f(x) = 3x^5 - 4x^3 - 3x.$$

Find and classify the critical points of f.

Fact 1. Recall the quadratic formula: if $f(x) = ax^2 + bx + c = 0$, then

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The *discriminant* of f is

$$\Delta = b^2 - 4ac$$

Then

- if $\Delta > 0$, f has exactly two real zeros.
- if $\Delta = 0$, then f has exactly one real zero.
- if $\Delta < 0$, then f has no real zeros.

Use this basic fact to solve the following problem.

Problem 2. Consider the cubic polynomial

$$f(x) = x^3 + ax^2 + bx.$$

Since f is a polynomial of odd degree, f has at least one real zero.

- (a) Find the values of a and b for which f has exactly three zeros.
- (b) Find the values of a and b for which f has exactly two zeros.
- (c) Find the values of a and b for which f has exactly one zero.
- (d) Find the values of a and b for which f has exactly two local extrema.
- (e) Find the values of a and b for which f has exactly one horizontal tangent.
- (f) Find the values of a and b for which f has no horizontal tangents.

Problem 3. Let

$$f(x) = 3x^4 - 16x^3 + 24x^2 + 48x^3$$

- (a) Find f''.
- (b) Solve f''(x) = 0 and create a sign chart for f''.
- (c) Identity maximal intervals on which f is concave up or concave down.
- **Problem 4.** Thomas Problem $\S4.5 \# 4$.
- **Problem 5.** Thomas Problem $\S4.5 \# 7$.